Sunday, September 27, 2015

Binomial Theorem

What up G's ,

A couple days ago we have went over Pascal's Triangle and Binomial Theorem.
Pascal's Triangle is a table of  Binomial Coefficients.


<--------- (x + y)0   =                    1
<--------- (x + y)1   =                1x+1y

<----------(x + y)²   =           1x + 2xy +1y
<----------(x + y)3   =     1x + 3x y + 3x y + 1y
<----------(x + y)4   = 1x + 4xy + 6xy + 3xy + 1y



Binomial Theorem is a formula to quickly expand binomial expressions to locate a specific term.

Formula: Tk+1=nCk A^n-k B^k

Example 1                  Using the formula to find the 4th term of (x-2y)^10


K= 4-1 = 3                               Tk+1=nCA^n-k B^k

N= 10                                        T3+1=10C(x)^10-3 (-2y)^3
A= X
B= -2y                                      T4= 120x^7 * -8y^3

T4= -960x^7y^3

No comments:

Post a Comment