Tuesday, January 5, 2016

Exponential and Logarithmic Functions Recap



Hello. Here’s a quick re-cap of what we have learned about exponential and logarithm functions before winter break.

Graphing Exponential Functions

Key points to remember:
  •   Basic curve: y=cx
  • The same transformation rules apply:
 y=(a)cb(x-h)+k 
o   a – vertical stretch by a factor of lal about the x axis.
-          ex: y= (5)cx (Vertical stretch by a factor of 5 about the x axis.)

o   b – horizontal stretch by a factor of 1/b about the y axis.
-          ex. y=c2x (Horizontal stretch by a factor of ½ about the y axis.)

o   h – horizontal translation
-          ex. y=c(x+2) (Horizontal translation by 2 units to the left)

o   k – vertical translation
-          ex. y=c + 3 (Vertical translation by 3 units up)
 
Steps:
  1.  Determine the horizontal asymptote. (The horizontal asymptote is related to the vertical translation, k.)
  2.  Table of Values; pick x values.
  3.   Plug in the x values into the equation in order to find the corresponding y values.
  4.  Graph.
y = 2z

HA @ y=0

Table of Values:


Graph:




Graphing Logarithmic Functions

Key points to remember:
  •   A logarithm function is the inverse of an exponential function.
Steps
  1.  Convert logarithmic function to exponential function using the 7 Rule.
  2.   Determine the vertical asymptote.
  3. Table of Values; pick y values.
  4. Plug in the y values into the equation in order to find the corresponding x values.
  5.  Graph.
f(x) = log2x -> 2y = x

VA @ x=0

Table of Values




Graph:


Expanding and Simplifying Logarithmic Expressions

Key points to remember when expanding:
  •   Roots -> fraction exponent
  •  Division -> subtraction
  •  Multiplication -> addition
  •  Exponent -> coefficient
Ex.

Key points to remember when simplifying:
  •  Move all negative terms to the end
  • Coefficient -> exponent
  •  Addition -> multiplication
  •  Subtraction -> division
  •  Fraction exponent -> roots
                                                       
 
 




No comments:

Post a Comment