Tuesday, October 13, 2015

Going Backwards with Transformations


       A couple of days ago, we learned how to graph y= f(x) if the transformed function is given. We can determine the original function y=f(x) when the transformed function is given, by first determining what transformation(s) occurred in the function. Then, reverses the steps of transformation(s) after doing so, apply the opposite operation to the x and y point(s).


Example:
-        Given the transformed function y= 2f ½ (x+2) -1 below. What is the graph of y= f(x).

       Transformation:             To get y= f(x)                        
     - Multiply y-values by 2            - Add 1 from y-values
     - Subtract 1 from y-values         - Divide y-values by 2
     - Multiply x-values by 2           - Add 2 from x-values
     - Subtract 2 from x-values        - Divide x-values by 2
                        
     
                                                        y= 2f ½ (x+2) -1        y= f(x)
                                          (-1, 1)                      (½, 3/2)
                                                          (2, -2)                      (5/2, ­­-½)
                                                          (4,-2)                       (4, -½)
                                                          (6, 0)                       (5, ½)


No comments:

Post a Comment